
Das2: Interface Control Document 1

Version 2.2.2 Interface Reference
Revision 2017-05-22

Purpose Who Date

Starting Das 2.2.1 features, server side caching directives C. Piker 2015-03-16

Adding exmapleParam to DSDFs C. Piker 2015-05-12

Added information on macro substitution in label strings C. Piker 2015-05-21

Added keyword to handle dataset path redirects C. Piker 2015-06-29

Expand validRange DSDF info, added item_XX description C. Piker 2015-07-15

Added yTagInterval, yTagMin, yTagMax, corrections, clarifications C. Piker 2017-05-08

Recent Revisions

Das2: Interface Control Document 2

Table of Contents
1 Das2 System..4

1.1 Overview...4
1.2 Known Das2 Servers...5
1.3 Autoplot – A General Das2 Client...5
1.4 Data Formats...5
1.5 What about Das1?...5

2 Das 2.2 Client – Server Interface..6
2.1 List Query..6
2.2 Discovery Query...7
2.3 DSFD Query..7
2.4 Data Query..8
2.5 Restricted Data Query...9
2.6 Peers Query...10

3 Das 2.2 Server – Reader Interface..12
3.1 Reader Program Command Line Interface...12
3.2 Data Source Definition Files (DSDF)...12
3.3 Example DSDF files...15
3.4 Normalizing Reader Parameters...17

4 Das 2.2 Stream Format...18
4.1 Header Packet Wrappers...18
4.2 Stream Header Packet...19
4.3 Data Header Packets...22
4.4 Data Header Reference Table..24
4.5 Comment Packets..27
4.6 Exception Packets...28
4.7 Data Packets..28
4.8 Macro Substitution in Header Packets..29

5 QStream Format..30
5.1 Stream Descriptor..30
5.2 Packet Descriptors...30
5.3 Exceptions...32
5.4 Examples...32

Appendix A: Das 2.3 Client - Server Interface..33
A.1: Relative URLs...33
A.2: Describe Request...34
A.3: Das 2.3 Query Strings...34

Appendix B: Das 2.3 Server – Reader Interface..35
B.1: Data Source Interface Definition (DSID) Files...35
B.2: Das 2.3 Java Plugin Readers...36
B.3: Command Line Readers..36

Appendix C: DSID Schema Reference..39
Appendix D: Proposed QStream Changes...40
Appendix E: Example Das2 Stream Header Packets...41

E.1: Correlated time series (x multi y)..41

Das2: Interface Control Document 3

Acronym Meaning

DSDF Data Set Descriptor File, A file defining a Das 2.1 data source for use via a Das2 server.

DSID Data Set IDentification, A type of file defining a Das 2.2 data source for use via a Das2 server.

HTTP HyperText Transfer Protocol, The basic transport protocol for most of the world's data.

IDL Interactive Data Language, a programming language that runs on interpreters written by the Exelis
company.

Table 1: Acronyms used within this document

Issue Affects

Table 2: Known document Issues

Das2: Interface Control Document Das2 System 4

1 Das2 System

This interface control document defines the interaction protocols and conventions for the Das2 data handling
system. Das2, and it's predecessor Das1, were developed at the University of Iowa to ease retrieval and use of
space physics research data for Professor Don Gurnett's staff and collaborators. Data from the Voyager, Galileo,
Cassini, and Juno spacecraft are routinely accessed and processed via Das2 servers. In 2012 Professor Craig
Kletzing's staff also began using a Das2 server in support of the Van Allen Probes mission. As more programs
and missions come to rely on the system the time has come to document the interfaces by which all Das2
developers may cooperate.

1.1 Overview

The Das2 system consists of three basic parts, in order of further removal from the source data

1. One or more readers. These programs read data from some source and provide it in a standardize format.
Readers are accompanied via Data Source Identification files (DSID files) which describe how to run the
reader, and what kind of data it provides. There is also an older data source definition file format, called
DSDF format, that consists of IDL statements.

2. One or more servers. These programs listen for queries and respond. If the query is a request for data it
starts a reader and provides the data.

3. One or more clients. These programs are the human interface. They request data and plot it.

Clients may request general information about the server, or one of more of it's data sources. These are termed
discovery queries. Currently only the HTTP protocol is supported as the transport mechanism for discovery
queries. The basic information flow is diagrammed below.

Discovery Query Information Flow

Data Query Information Flow

Clients may also request data from one or more of the server's data sources. To handle a data request, a server

Server
Process

Client
Process

Discovery Query

Metadata response
(Text Information)

DSDF or DSID files

DSID
file Reader

Process

Data Response
(Das2, or QStream)

Data Query
Client

Process
Server
Process

Das2: Interface Control Document Das2 System 5

starts a reader program, provides the reader with a set of query parameters, and pipes it output through any needed
server side filters and then sends the final output across the network to the client program. Regardless of the
on-disk format of the original data, the data response is encoded as either a Das2 Stream or a QStream.

1.2 Known Das2 Servers

It's handy to be able to test communications with a Das2 server when using the system reference. Towards that
end, Table 3 provides a list of known Das2 Servers as of summer 2013. The authors make no guarantee on it's
continued accuracy.

Hostname Resource Protocol Purpose

www-pw.physics.uiowa.edu /das/das2Server Das 2.1
Serves data for instruments on Cluster,

Galileo, Polar and others

emfisis.physics.uiowa.edu /das/das2Server Das 2.1
Serves data for instruments on the Van

Allen Probes mission

planet.physics.uiowa.edu /das/das2Server Das 2.1 Serves data for Juno, Voyager and others

cassini.physics.uiowa.edu /das/das2Server Das 2.1 Serves data for instruments on Cassini

Table 3: Known Das2 Server Locations

1.3 Autoplot – A General Das2 Client

For basic testing a decades old telnet client may be used to interact with a Das2 server. But this is not very
satisfying and hardly suitable for getting real work done. The Autoplot program provides an interface for
browsing Das2 servers, retrieving data, and interacting with the resulting plots. A copy of Autoplot may be
downloaded from:

http://autoplot.org

1.4 Data Formats

Currently two transport formats are supported. All three are considered stream formats in that client programs
may begin processing data before the transmission completes. Data definitions always proceed data values.

das2Streams – These are self-describing data sets which contain headers to define the layout of succeeding bytes.
This format supports a handful of fixed data value arrangements.

QStreams – These are also self-describing data sets which contain both headers to define the layout of succeeding
bytes. This format is more general than das2Streams, supporting a wider variety of data value arrangements.

1.5 What about Das1?

The predecessor to Das2 was just named Das, though with the creation of a successor it has taken on the name
Das1. The Das1 system defined data sources via files containing snippets of IDL code and the data sources
themselves were to output a stream consisting entirely of Big Endian IEEE 32-bit floating point numbers. These
streams contained no headers or other descriptive information and were thus not complete without the IDL code
fragment defining their structure. Furthermore there was no standard method by which Das1 data sets could be
transmitted over the network to a remote client program. Typically these data sets were rendered into image files
on a server, and only the static images themselves were transported to the end user program.

Das2 replaced Das1 by providing fully interactive client programs which could manipulate data, and
automatically issue new data queries as a human navigated the data set. Das2 servers can make use of Das1
reader programs though continued development of Das1 readers is not recommended.

http://autoplot.org/

Das2: Interface Control Document Das 2.2 Client – Server Interface 6

2 Das 2.2 Client – Server Interface

The purpose of a Das2 server is to listen for queries and provide responses in a standardized format. Though
there are many moving parts behind the scenes, client programs need only implement a Client – Server Interface
in order to find and retrieve data. If programs need to actually parse and display data sections 4 and 5, will be
needed as well.

The Das 2 client - server protocol has been use since 2003. In this protocol all data are assumed to be indexed by
collection a single parameter (almost always the parameter is Time), and all queries that return a data response
require a starting and ending point.

Data discovery consists of HTTP GET requests sent by the client program, followed by an HTTP response whose
message body that contains the response data.1 To nail it down, requests have the following syntax:

Generic Das 2 Request

GET RESOURCE?QUERYSTRING HTTP/1.0
Host: SERVER
Accept: text/*

Note that each line is terminated by the newline character (ASCII 0x0A). The items in bold are replacement
parameters.

NOTE: All data requests are HTTP message headers and thus end with a single blank line.

2.1 List Query

This request provides a list of all legacy data sources defined using DSDF format files. The following example
text, if encoded as ASCII bytes, could be sent to a server. Here's an example of a list discovery request.

List Request

GET /das2/das2Server?server=list HTTP/1.0
Host: www-pw.physics.uiowa.edu
Accept: *

Which would return one line for each level of the data source hierarchy and one line for each data source similar
to the following (only the first few return lines are given):

List Response

HTTP/1.1 200 OK
Date: Tue, 23 Jul 2013 21:04:06 GMT
Server: Apache/2.0.63
Connection: close
Content-Type: text/plain; charset=ISO-8859-1

cassini/
cassini/mag/
cassini/mag/mag_vector
cassini/mag/mag_vectorP
cassini/overlay/

(More lines follow...)

Each level of the data source hierarchy is returned, followed by each data source within that level of the hierarchy.

1 HTTP The Definitive Guide, Chapter 3, O'Reilly & Associates, Inc, 2002

Das2: Interface Control Document Das 2.2 Client – Server Interface 7

Note that hierarchy levels end in a trailing '/' character.

2.2 Discovery Query

This request is similar to a list request but only returns data sources that have an example time range.

Discovery Request

GET /das2/das2Server?server=discovery HTTP/1.0
Host: www-pw.physics.uiowa.edu
Accept: *

Since the cassini/ level below contains no data sources that have an example time range, that level of the
hierarchy isn't returned.

Discovery Response

HTTP/1.1 200 OK
Date: Tue, 23 Jul 2013 21:10:53 GMT
Server: Apache/2.0.63
Connection: close
Content-Type: text/plain; charset=ISO-8859-1

cassini/mag/
cassini/mag/mag_vector
cassini/mag/mag_vectorP
das2_1/testing/

(More lines follow...)

2.3 DSFD Query

This request provides information on a particular data source, thus two parameters are required. In the following
example a more information is requested on magnetic field vector data set:

DSDF Request

GET /das2/das2Server?server=dsdf&dataset=cassini/mag/mag_vector HTTP/1.0
Host: www-pw.physics.uiowa.edu
Accept: *

This returns a Das2 Stream packet providing some information on the data set, it this case:

DSDF Response

HTTP/1.1 200 OK
Date: Tue, 23 Jul 2013 21:21:55 GMT
Server: Apache/2.0.63
Expires: Tue, 23 Jul 2013 21:21:55 GMT
Connection: close
Content-Type: text/plain; charset=ISO-8859-1

[00]000176<stream > <properties validRange="1999-228 to 2010-359"
server="http://cassini.physics.uiowa.edu/das/das2Server" das2Stream="1"
exampleRange="2010-001 to 2010-002" /> </stream>

is returned. Arbitrary identifiers may be returned as attributes in the properties element. There are no
particular rules just whatever happens to be in the server side DSDF file is sent over. Some conventions have
been followed, but a client program can't expect this to always be the case. The conventional attributes are:

Das2: Interface Control Document Das 2.2 Client – Server Interface 8

das2stream= "0"|"1" If 1 the data source probably provides data in Das2 Stream format.

qstream= "0"|"1" If 1 the data source probably provides data in QStream format.

exampleRange= "START_TIMEPOINT to END_TIMEPOINT" If returned, this attribute value probably
contains a query range that will provide some data.

server= "URL" If returned, this attribute's value contains the proper Das2 Server to query to retrieve data
for this data source. Das2 Servers can advertise other server's data sources.

Das 2.2 data discovery protocol messages are more tightly specified.

2.4 Data Query

The fundamental assumption of all Das 2.1 compatible data sources is that data are queried by time range.
Though still relatively simple, data requests are the most complex queries supported by the Das 2.1 server as
many optional parameters are supported. The example query below uses the minimum number of data request
parameters.

Data Request

GET /das/das2Server?
server=dataset&dataset=cassini/mag/mag_vector&start_time=2010-001&end_time=2010-002 HTTP/1.0
Host: cassini.physics.uiowa.edu
Accept: *

For this particular data source, the response body contains a Das2 Stream. For more details on the Das2 Stream
format, see section 4.

Data Response (Das2 Stream Data Source)

HTTP/1.1 200 Binary data follows
Date: Tue, 23 Jul 2013 22:14:13 GMT
Server: Apache/1.3.9 (Unix)
Content-disposition: inline;filename=mag_vector_2010-001_2010-002.d2s
Expires: Tue, 23 Jul 2013 22:14:13 GMT
Connection: close
Content-Type: application/vnd.das2.das2stream

[00]000124<stream version="2.2">
 <properties start="2010-001" end="2010-002" Datum:xTagWidth="120 s" int:taskSize="100"/>
</stream>
[01]000224<packet>
 <x type="sun_real8" units="t2000"/>
 <y type="sun_real4" name="" units=""/>
 <y type="sun_real4" name="x" units=""/>
 <y type="sun_real4" name="y" units=""/>
 <y type="sun_real4" name="z" units=""/>
</packet>
:01:

(Binary Data Follows...)

Table 4 below describes the query string elements for a Das 2.1 data request.

Das2: Interface Control Document Das 2.2 Client – Server Interface 9

Key Value Required

server dataset yes

dataset The data source to query yes

start_time
(reader.x.min)

Any parse-able time point format. The ISO-8601 time format is
a subset of the allowed time formats.

yes

end_time
(reader.x.max)

A time point greater than the value of start_time. yes

interval
(reader.x.interval)

The interval in seconds between data points. Some data
sources, such as those that return spacecraft ephemerides,
require this parameter, though this is not advertised.

maybe

resolution
(reducer.x.resolution)

The time resolution in seconds at which data are needed. When
the resolution is specified server side data reduction may be
triggered which can drastically reduce network overhead.

no

params
(reader.params)

Extra information may be passed to a reader via this parameter. maybe

compress If present and set to the value true, and the data source
provides Das2 Stream formatted output, then the stream is
g-zipped on the server before transmission over the wire.

no

ascii If present, and set to any value, and the data source provides
Das2 Stream formatted output, then binary data values will be
converted to their ASCII equivalents before transmission.

no

Table 4: Das 2.2 Data Request Query Parameters

It is possible for one Das2 server to advertise data sources that are hosted by a second Das2 server. If a client
program queries for data from non-local data source an HTTP redirect is issued instead of a data reply. In the
example below, the server www-pw.physics.uiowa.edu is requested to provide Cassini Mag vector data.
Since the server knows that those data are provided by the host planet.physics.uiowa.edu, A redirect
response is returned.

Redirect Response

HTTP/1.1 302 Found
Date: Thu, 25 Jul 2013 21:53:03 GMT
Server: Apache/2.0.63
Location: http://planet.physics.uiowa.edu/das/das2Server?server=dataset;dataset=cassini
%2Fmag%2Fmag_vector;start_time=2010-001;end_time=2010-002
Content-Length: 0
Connection: close
Content-Type: text/plain

Note that the replacement GET string in the redirect response is URL encoded, thus "/" characters appear as the
escape sequence %2F.

2.5 Restricted Data Query

Some data sources require that a user name and password are provided as part of the data request. In these cases
the server will expect that the HTTP header Authorization is present in the data request. The contents of this
header will be inspected by the server and compared against it's internal database before data are sent. If this
header is not present a "401 Authorization Required" status will be returned to the client instead of the
requested data. The following query and response flow illustrates querying for restricted data.

Das2: Interface Control Document Das 2.2 Client – Server Interface 10

Data Request

GET /das/das2Server?
server=dataset&dataset=cassini/mag/mag_vector&start_time=2010-001&end_time=2010-002 HTTP/1.0
Host: cassini.physics.uiowa.edu
Accept: *

Authorization Required Response

HTTP/1.1 401 Authorization Required
WWW-Authenticate: Basic realm="Das2 Server"

At this point the client program gathers a user name and password by what ever means it prefers and
tries again.

Data Request

GET /das/das2Server?
server=dataset&dataset=cassini/mag/mag_vector&start_time=2010-001&end_time=2010-002 HTTP/1.0
Host: cassini.physics.uiowa.edu
Authorization: Basic YnJpYW4tdG90dHk6T3ch
Accept: *

Data Response (Das2 Stream Data Source)

HTTP/1.1 200 Binary data follows
Date: Tue, 23 Jul 2013 22:14:13 GMT
Server: Apache/1.3.9 (Unix)
Content-disposition: inline;filename=mag_vector_2010-001_2010-002.d2s
Expires: Tue, 23 Jul 2013 22:14:13 GMT
Connection: close
Content-Type: application/vnd.das2.das2stream

[00]000124<stream version="2.2">
 <properties start="2010-001" end="2010-002" Datum:xTagWidth="120 s" int:taskSize="100"/>
</stream>
[01]000224<packet>
 <x type="sun_real8" units="t2000"/>
 <y type="sun_real4" name="" units=""/>
 <y type="sun_real4" name="x" units=""/>
 <y type="sun_real4" name="y" units=""/>
 <y type="sun_real4" name="z" units=""/>
</packet>
:01:

(Binary Data Follows...)

2.6 Peers Query

Das2 Servers can advertise the existence of other Das2 Servers, in fact a list of know servers is maintained by the
server:

http://www-pw.physics.uiowa.edu/das/das2Server

A client program my connect this address and gather a list of known Das2 servers using a peers query as
demonstrated below.

Das2: Interface Control Document Das 2.2 Client – Server Interface 11

Peers Query

GET /das/das2Server?server=peers HTTP/1.0
Host: cassini.physics.uiowa.edu
Accept: *

Peers Response

HTTP/1.1 200 OK
Date: Thu, 25 Jul 2013 21:35:12 GMT
Server: Apache/1.3.9 (Unix)
Connection: close
Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8" ?>
<?xml-stylesheet type="text/xsl" href="/~eew/das2Server.xsl"?>
<das2server>
 <peers>
 <server>
 <name>www-pw</name>
 <url>http://www-pw.physics.uiowa.edu/das/das2Server</url>
 <description>Original das2 Server</description>
 </server>
 <server>
 <name>planet</name>
 <url>http://planet.physics.uiowa.edu/das/das2Server</url>
 <description>Linux das2 server</description>
 </server>
 <server>
 <name>emfisis</name>
 <url>http://emfisis.physics.uiowa.edu/das/das2Server</url>
 <description>Dan's das2 server</description>
 </server>
 </peers>
</das2server>

Das2: Interface Control Document Das 2.2 Server – Reader Interface 12

3 Das 2.2 Server – Reader Interface

Readers are a server side components responsible for gathering data from the input source, typically files on disk,
and transmitting a stream to standard output. Readers are independent programs, thus they can be written in any
language executable by the host operating system.

3.1 Reader Program Command Line Interface

Das 2.2 readers are always stand alone programs which must support one of the following command line patterns.

• General data readers: program START_TIME END_TIME EXTRA_PARAMETERS

• Variable resolution readers: program START_TIME END_TIME RESOLUTION_IN_SEC EXTRA_PARAM

Here the string program is flexible. It can be just the name of a program, or a program and it's space separated
arguments. The only requirement in that shell pipes and other IO redirection operators my not be part of the
program string.

The EXTRA_PARAMETERS passed to a program may be specified as multiple arguments or they may arrive as a
single quoted argument with space separated sub-components. There are few formatting rules on the extra
arguments, shell pipes and other IO operators are not permitted but that's about it.

The output of a reader program is always a Das2 Stream or a QStream.

3.2 Data Source Definition Files (DSDF)

In order to server data, the Das 2.2 server depends on small text files called Data Source Definition Files (DSDF).
The location of these files depends on your particular Das2 installation. The file names must end in the suffix:

.dsdf

or the server will ignore them. Data source definition files use IDL syntax, thus strings are marked by single
quotes ('), a semicolon ';' represents the start of a comment, and comments run to the end of the line. Each
non-comment line in the must follow the

keyword = value

pattern. Both the Das2 server and end-user client programs can access DSDF files, though typically any
particular value is likely to be more useful to either the server or to the clients. A summary of keywords is
provided below.

Keyword Required Notes

reader yes An arbitrary string that provides the beginning portion of the command
line needed no invoke the reader, START_TIME, END_TIME and any extra
arguments will be added to any arguments embedded in the string.

description yes A human readable description of the data source.

techContact yes An email address indicating who to contact if there is a problem with a
reader. An example value:
 'Some Person <some-person@uiowa.edu>'

requiresInterval maybe Set to '1' to indicate that the client program should specify the interval
between measurements. For time based queries the interval is assumed to
have units of seconds.

Das2: Interface Control Document Das 2.2 Server – Reader Interface 13

Keyword Required Notes

das2Stream yes
(unless

qstream)

If set to '1' then the reader produces a Das2 Stream (see section 4 for
Das2 Stream formatting information) . There is no need to include this
keyword if the reader produces a Q Stream.

exampleRange_XX yes An example time that is known to provide visible data. This is use by
client programs to 'just get something on the screen'. There can be up to
100 example ranges. The format of this string field is as follows:
 'START_TIME to END_TIME | NAME'
using Voyager as an example:
 exampleRange_01 = '1979-03-01 to 1979-04-14|Jupiter Encounter'
 exampleRange_02 = '1980-11-10 to 1980-11-14|Saturn Encounter'
The '|Name' portion of the string is optional, but encouraged.

qstream yes
(unless Das2

stream)

If set to '1' the reader produces Q Streams (see section 5 for Q Stream
formatting information). There is no need to include this keyword if the
reader produces a Das2 Stream.

techContact yes Provides contact information for the data set incase there are technical
problems.

cacheLevel_XX no Some Das2 servers can store pre-reduced datasets. To direct the server to
generate a set of pre-reduced datasets use this keyword. The value format
is:
 RESOLUTION | STORAGE_PERIOD [| PARAMS]

Each resolution level of the cache is separated by '|' (pipe) characters. A
semicolon is placed between the resolution value and file duration value.

● RESOLUTION is a Das2 datum string, typically given in seconds, or
the keyword 'intrinsic' to indicate caching the highest resolution
available from the data source.

● FILE_PERIOD determines the coverage period of each cache file. For
RESOLUTION Datums that have units of time, the following keywords
may be used: hourly, daily, monthly. The format for caching based
on data indexes other than time have not been established.

● PARAMS A string of optional extra parameters to send to the reader
when producing the cache.

Example cacheLevel_XX values:

 cacheLevel_00 = 'intrinsic | hourly'

 cacheLevel_01 = '1 s | daily'

 cacheLevel_02 = '60 s | daily | -r no-spikes'

Cached datasets are generated via the reduction program specified in the
reducer keyword thus if reducer = 'not_reducable' only 'intrinsic'
resolution may be used when specifying cache levels. If any
PARAMeters are specified, these are provided to the reader with
underscores converted to spaces.

cacheReader no If this item is blank the default cacheReader for the output type
(das2Stream or qstream) will be invoked to read the data cache

exampleInterval_XX maybe This keyword is required for each exampleRange when the reader
requires an interval parameter.

exampleInterval no A synonym for exampleInterval_00.

Das2: Interface Control Document Das 2.2 Server – Reader Interface 14

Keyword Required Notes

exampleParams_XX no To specify a parameter set to provide to a reader when called for a given
exampleRange use this keyword. This keyword is adds a reader
parameter string to an associated exampleRange_XX keyword. Where
the characters XX are replaced by the example number.

exampleParams no A synonym for exampleParams_00.

exampleRange no A synonym for exampleRange_00.

item_XX no
(recommended)

Used to name independent datasets in a stream. This allows a Das2 client
to only load the individual planes of a Das2 stream, or individual datasets
in a qdataset bundle. The format is:

 item_XX = 'ID [| DESCRIPTION]'

In the following example the Das2 reader that produces magnetic X, Y, Z
and Magnitude values each as a separate <y> vector.

 item_00 = 'mag | Magnetic Field Magnitude'
 item_01 = 'x_gsm | X component in the GSM frame'
 item_02 = 'y_gsm | Y component in the GSM frame'
 item_03 = 'z_gsm | Z component in the GSM frame'

For Das2 Streams, ID values above must match the name attribute value
given in the <y>, <yscan> and <z> elements in the packet headers. See
section 4.3 for more information an Das2 stream packet headers.

For QStreams, ID values above match the id attribute in <qdataset>
elements in the packet headers. See section 5.2 for more information on
QStream packet headers.

Though this keyword is not required, it is strongly recommended for
streams that produce more than one top-level dataset by default.

readAccess no This value controls when authorization is needed and who is authorized.
The format of this field is:
 'AUTH_METHOD:TEST [| AUTH_METHOD:TEST]'
here AUTH_METHOD is a token stating the authorization method and TEST
is the value to test against. AUTH_METHOD may be one of AGE, GROUP or
USER. If any one authorization method succeeds then access is granted.
Thus authorization methods are combined using a logical OR test.

An example for voyager follows:
 readAccess = 'AGE:1y6m|GROUP:voyager|USER:don'
In this example data older that 18 months is automatically authorized, so
is anyone in the group voyager, as well as the user don.

securityRealm no This string should be provided by a Das2 client to end-user that is
providing the authentication token and provides a context-clue as to what
password is expected. For example:

 securityRealm = 'Juno Magnetospheric Working Group'

indicates that users in the MWG should have access to these associated
data stream.

Das2: Interface Control Document Das 2.2 Server – Reader Interface 15

Keyword Required Notes

reducer no One of the key benefits of serving data via a program instead of directly
transmitting files is that data reduction can take place on the server which
can drastically reduce the network bandwidth required to produce a plot.
There are three categories to the values for this keyword.
● If this keyword is not specified a default data-reduction program
will process the reader's output stream. By default data are averaged in
the streaming dimension (see sections 4 and 5 for a definition of the
streaming dimension).
● If set to the value “not_reducible” no server-side data reduction
will be preformed.
● If set to the name of a program on the server then that program will be
used to reduce data in the streaming dimension before delivery.

rename no If a datasource is renamed this keyword may be used in the old copy of
the datasource to point clients to the new location. DSDF files containing
the keyword rename are included in the output of list and discovery
queries. See section 2.1 for more information on list queries.

sciContact no An email address providing contact information for questions about
scientific usefulness or interpretation of the data source.

server no A das2 server can advertise the existence of data sets hosted via another
das2 server. If this keyword is present and it's value doesn't match the
URL of the server which was contacted, then the contacted server issues
an HTTP redirect will to the client.

testInterval maybe This keyword is required if testRange is given and the reader requires
an interval parameter.

testRange no A test time that is expected to provide unchanging visible data. It is use
by automated end-to-end testing software to make sure that the output of
a reader doesn't change over time.

validRange no
(recommended)

A time range over which the data source may produce output. The syntax
is:
 validRange = BEGIN to END

Instead of a timestamp, the END may be denoted by the case-insensitive
word 'now' for on-going missions. The following example is for Voyager
1 PWS Waveform data:

 validRange = '1977-09-05T00:00 to NOW'

Though not required, usage of this keyword is highly recommended.

AnyKeyword no Any other key = value pair may be included in the file but only the ones
above have specific uses.

Table 5: DSDF Keywords

3.3 Example DSDF files

The following file Voyager PWS file tells the Das2 server how to run the data reader, which reducer should be
used to handle long time ranges and provides a few example times to get to interesting data quicker. The required
keywords are in bold font.

das2Stream = 1
server = 'http://planet.physics.uiowa.edu/das/das2Server'
description = 'Electric Field averages and peaks from the Voyager 1 PWS SA'

Das2: Interface Control Document Das 2.2 Server – Reader Interface 16

reader = '/opt/project/voyager/bin/centos5.x86_64/vgpw_sa_rdr 1'
reducer = 'peakAverageSeconds'
readAccess = 'age:1y6m|group:voyager'
validRange = '1977-09-05 to 2014-09-01'
testRange = '2009-01-01 to 2009-04-01|Regression Test Data'
exampleRange = '2014-08-31 to 2014-09-01|Latest Data'
exampleRange_01 = '1979-03-01 to 1979-04-14|Jupiter Encounter'
exampleRange_02 = '1980-11-10 to 1980-11-14|Saturn Encounter'
techContact = 'Jane Doe <jane-doe@uiowa.edu>'
sciContact = 'Dr. Scientist <doc-sci@uiowa.edu>'

Example DSDF: voyager/1/pws/SpecAnalyzer-4s-Efield.dsdf

The following Juno Ephemeris data source definition file provides the same kinds of information as the DSDF
above, but add extra details needed for handling data that is produced at regular intervals. In this case the data are
produced by consulting SPICE kernels over the time frame of interest for the Juno Mission. Bold items are
required. Since this data stream should not be reduced in the time domain the special flag 'not_reducible' is set.
Also this data source requires an extra parameter. In addition to the start point and end point, the program expects
as it's third argument the interval between output points. The example below also carries keywords not defined in
table 5 above, which is valid. Das2 servers blindly pass unknown keywords out to client programs.

description = 'Juno Solar orbit parameters'
server = 'http://planet.physics.uiowa.edu/das/das2Server'
reader = '/opt/project/juno/bin/centos5.x86_64/jephemrdr2 2'
spacecraft = 'Juno'
spacecraft_id = 'JO'
das2Stream = 1
reducer = 'not_reducible'
requiresInterval = 1
techContact = 'John Doe <john-doe@uiowa.edu>'
readerSource = 'https://saturn.physics.uiowa.edu/svn/juno/trunk/ephemeris'
version = 502
change_01 = '2014-08-11: Switched to Heliographic Inertial coord. frame'

; Use post earth fly-by data for a test range, with a 3-hr "tick" interval
testRange = '2013-11-01 to 2013-11-02'
testInterval = 10800

Example DSDF: juno/ephemeris/jephemSun.dsdf

The following following Juno Magnetometer data source definition file specifies that pre-reduced data at various
should be cached.

description = 'Magnetic Field Components in Spacecraft Solar Ecliptic Frame'
techContact = 'Jane Doe <jane-doe@gsfc.nasa.gov>'
sciContact = 'Co Invistigator <co-investigator@gsfc.nasa.gov>'

reader = 'fgm_pds_miscrdr --das2times=scet'
reducer = 'das2_bin_avgsec'

exampleRange = '2014-04-08T00:00 to 2014-04-08T01:00'
cacheLevel_00 = 'intrinsic | daily'
cacheLevel_01 = '1 s | daily'
cacheLevel_02 = '60 s | daily'

Example DSDF: juno/fgm/MagComponentsSCSE.dsdf

Das2: Interface Control Document Das 2.2 Server – Reader Interface 17

3.4 Normalizing Reader Parameters

TODO: Write this

Das2: Interface Control Document Das 2.2 Stream Format 18

4 Das 2.2 Stream Format

Typical space physics data sets have a much greater extent in
the time dimension than in the various measurement
dimensions. For example, the electric field spectrum analyzer
on the Voyager missions only have 16 frequency channels, but
a spectra have been collected about 4 times a minute for over
35 years! Obviously this data set has a much larger extent in
the time dimension than the frequency dimension. Most space
physics particles and fields data sets have this property, so das2
streams were designed for delivering time-dependent values in
such a way that data reduction in the time domain is easy to
accomplish. To do this increasing file offsets correspond with
increasing independent data values as illustrated in figure 1 to
the right.

A Das 2 stream consist of two types of packets:

• Header packets: These packets contain data structure
definitions and processing information messages.

• Data packets: These contain the actual data, typically
in binary form.

Das2 Streams contain 2 to N co-varying vectors. Each data
packet provides an X-axis value, with is usually time, and at
least one measurement value for each of the independent data
values. Though this would seem to restrict the streams to two
dimensional data, the X tagged Y scan stream type described in
section 4.3 allows this format to provide three dimensional
information as well.

Each set of dependent values is called a data plane. For X versus Y streams, a plane can be though of as a single
column of data. The stream depicted in Figure 1 above contains two Y planes. The first is the R vector and the
second is the B vector.

4.1 Header Packet Wrappers

All header packets have a 10 byte prefix consisting of ASCII text characters. Encoded in the prefix is the Packet
ID, and the Packet Length as defined in the following table.

Byte Index: 0 1-2 3 4-9 10 to Packet Length + 10

Value: 0x5B
ASCII [

Packet ID,
zero padded ASCII

integer

0x5D,
ASCII]

Packet Length*,
zero padded

ASCII integer

UTF-8 Header Message defining
data packets with the same ID as

the header

*This value is only equal to the number of characters in the message body if the message can be represented in
7-bit safe ASCII text. Typically this is the case, but not always.

Different packet ID's formats are required for different header packets types.

• ASCII 00 – Indicates a Stream Header Packet. A stream always starts with stream header packet. The
two bytes have the raw values 0x30, 0x30.

• ASCII xx – Indicates a comment packet. Comment packets may be used to provide status information to
the end user. Many client programs, such as Autoplot display these text messages to the end user as data
continues to load. The two bytes have the raw values 0x78, 0x78.

Figure 1: Stream versus Plot comparison

the data for this 2-line plot...

This 2-plane Das2 Stream provides...

Pkt 1: T[0] R[0] B[0]

Increasing byte offset

D
at

a
va

lu
e

Time

Pkt 2: T[1] R[1] B[1]

Pkt 3: T[2] R[2] B[2]

Headers

...

Pkt 4: T[3] R[3] B[3]

R

B

Das2: Interface Control Document Das 2.2 Stream Format 19

• ASCII 01 to 99 – Indicates data information, either a data packet header or a data packet itself. The
packet ID values for a header packet and it's associated data packet must match. The raw value range for
these two bytes is 0x30 to 0x39, though the combination 0x30,0x30 is not allowed.

4.2 Stream Header Packet

Every das2 stream must start with a stream header packet. The stream header is an XML message with the top
level element <stream>. The character encoding for Stream Header Packets is UTF-8. A typical stream header
packet follows.

[00]000108<stream version="2.2">
<properties Datum:xTagWidth="128.000000 s" double:zFill="-1.0e+31" />

</stream>

The following table defines the elements that make up a header packet.

Element Notes

<stream> Must always be contained in a header packet with packet id “00”

attribute compression If set to the value "deflate" then then rest of the stream after the
stream header packet has been compressed using the the deflate
method from the ZLIB compression library

attribute version For streams conforming to this document the version attribute value
should always be "2.2".

<stream>
 <properties>

Defines useful properties of this stream.

attribute String:renderer Used to suggest a plot type to the client program, values may be
'spectrogram', 'symbolLine', 'stackedHistogram', &
'waveform'.

attribute String:title If present this provides a title for plots generated from this dataset.

attribute String:summary Used to describe an entire Das2 stream.

DatumRange:
xCacheRange

This important attribute provides clients with the coverage range of
the data returned. Clients use this information, along with the
xCacheResolution, to decide if a Das2 server must be contacted
for new data after a zoom operation, or if rescaling data already
provided is is sufficient. Proper use of CacheRange and
CacheRelosultion tags can significantly increase the performance of
Das2 servers and clients.

attribute Datum:
xCacheResolution

Used with xCacheRange, this attribute provides the resolution of a
stream in the X dimension. This attribute should always be set for
data sources with a known resolution, such as ephemeris readers, or
data passed through bin-averagers. If this attribute not present, the
data are considered to be at intrinsic resolution. Thus many readers
will not need to set this attribute.

attribute String:xFormat If preset provides a

attribute String:xLabel If preset provides an x-axis label for plots generated from this
dataset. Labels may contain formatting flags which allow for
subscripts and superscipts, see section 4.2.1 below for details.

attribute boolean:
xMonotonic

If present allows the client to begin processing data before receiving
the entire stream.

Das2: Interface Control Document Das 2.2 Stream Format 20

Element Notes

attribute DatumRange:xRange Useful for setting X scale in client programs. The format of range
items is "START to END UNITS", where START and END are the
inclusive beginning and exclusive ending values, and UNITS are the
units string, if applicable.

attribute String:xSummary A brief description of the X direction values

attribute Datum:xTagWidth Defines the minimum gap in the X direction across which client
programs should not interpolate.

attribute double:xValidMax If present provides a maximum possible valid data value for X axis
values. Data above this value are not displayed.

attribute double:xValidMin If present provides a minimum possible valid data value for X axis
values. Data below this value are not displayed.

attribute DatumRange:
yCacheRange

Reserved for future use with data sources that support "area" queries,
i.e. min X,Y to max X,Y.

attribute Datum:
yCacheResolution

Reserved for future use with data sources that support "area" queries,
i.e. min X,Y to max X,Y.

attribute double:yFill Specifies a fill value for missing Y data values. Defaults to -1e31 if
not specified.

attribute String:yLabel If preset provides an y-axis label for plots generated from this
dataset.

attribute DatumRange:yRange Useful for setting Y scale in client programs. See the
DatumRange:xRange attribute for formatting details

attribute String:yScaleType May be one of the strings "log" or "linear"

attribute String:ySummary A brief descripton of the Y direction values

attribute Datum:yTagWidth Defines the minimum gap in the Y direction across which client
programs should not interpolate.

attribute double:yValidMin If present provides a minimum possible valid data value for Y axis
values. Data below this value are not displayed.

attribute double:yValidMax If present provides a maximum possible valid data value for Y axis
values. Data above this value are not displayed.

attribute double:zFill If present, defines the data Z values which should be read as a fill
values. By default the constant -1.0e31 is used as the fill value.

attribute String:zLabel If present provides a z-axis label for plots generate from this dataset.

attribute DatumRange:zRange Useful for setting Z scale in client programs. See the
DatumRange:xRange attribute for formatting details

attribute String:zScaleType May be one of the strings "log" or "linear"

attribute String:zSummary A brief descripton of the Z direction values

attribute double:zValidMin If present provides a minimum possible valid data value for Z axis
values. Data below this value are not displayed.

attribute double:zValidMax If present provides a maximum possible valid data value for Z axis
values. Data above this value are not displayed.

Das2: Interface Control Document Das 2.2 Stream Format 21

Element Notes

attribute boolean:AnyID
String:AnyID
double:AnyID
Datum:AnyID

DatumRange:AnyID
int:AnyID
Time:AnyID

TimeRange:AnyID

In addition to the named items below, generic metadata may be
provide, though client programs will not necessarily know what to
do with these extra properties, other than to store them for
presentation to the end user.

Examples of using this feature:
 String:maintainer="some-person@uiowa.edu"
 Time:creation_time="2014-04-23T00:30:23"

Table 6: Das2.2 Stream Header XML Elements

4.2.1 Label Values

The xLabel, yLabel and zLabel properties define text labels for plot axes. The following formatting strings may
be embedded within the labels to alter the placement and appearance of the text.

!A shift up one half line
!B shift down one half line (e.g. !A3!n-!B4!n is 3/4).
!C newline
!D subscript 0.62 of old font size.
!U superscript of 0.62 of old font size.
!E superscript 0.44 of old font size.
!I subscript 0.44 of old font size.
!N return to the original font size.
!R restore position to last saved position
!S save the current position.
!K reduce the font size. (Not in IDL's set.)
!! the exclamation point (!)

Case is not important, so "!A" and "!a" have the same effect.

4.2.2 Format Strings

Many Das2 Stream properties provided hints on how data should be formatted if presented in a graphical form,
only three properties, xFormat, yFormat and zFormat properties provide hints on how data should be printed as
ASCII strings.

* The following C-style conversion specifiers work for all types:

%f

%e

* Time types typically are presented as multi-part fields. The following conversion specifiers are understood for
data indicated as being a time type via a units property of us2000,t2000,us1980, t1970, mj1958, mjd,
cdfEpoch, tt2000.

The following mostly C-style conversion specifiers work for time values:

%Y - A 4-digit year

%m - A 2-digit month

%d - A

Characters that are not part of an understood format specifier are to be repeated in the output.

Das2: Interface Control Document Das 2.2 Stream Format 22

4.3 Data Header Packets

Following the stream header packet is at least one data header packet. Data packets of a particular type must be
proceeded in the stream by a header packet defining it's contents. There is no requirement that all header packets
types be placed at the start of the stream. It is merely sufficient that each type of data packet is defined
somewhere before it is encountered. The character encoding for Data Header Packets is UTF-8.

There are two basic data packet types:

• X tagged: For this packet type the co-varying Y vectors are merely correlated in the X-units and each
may have different units of measure. Data of this type are defined by including 1-N <y> child elements
under <packet> element.

• X tagged Y Scan: For this packet type the co-varying Y vectors all provide measurements in the same
units as well as being correlated in the X-units. Data of this type are defined by including a <yscan> child
element under the <packet> element.

4.3.1 X Tagged Stream Example

The das2 stream fragment below is taken from the Van Allen Probes Ephemeris data source. This is an X tagged
stream providing four vectors of spacecraft A position information with respect to time. In each data packet, the
first value is spacecraft event time, the second is the corresponding radial position in RE, the third is the Magnetic
Latitude, the forth is the Magnetic Local Time and the fifth is the L-shell value. Each “vertical” data vector
provides “Y” values in different units. Essentially this stream contains four correlated 2-D datasets in parallel.

[00]000102<stream version="2.2">
<properties DatumRange:xRange="2013-001T01:00:00 to 2013-01:10:00"/>
</stream>
[01]000424<packet>
 <x type="time23" units="us2000"></x>
 <y type="ascii11" name="radius" units="">
 <properties String:yLabel="R!DE!N" />
 </y>
 <y type="ascii11" name="mag_lat" units="">
 <properties String:yLabel="MLat" />
 </y>
 <y type="ascii11" name="mag_lt" units="">
 <properties String:yLabel="MLT" />
 </y>
 <y type="ascii11" name="l_shell" units="">
 <properties String:yLabel="L" />
 </y>
</packet>
:01:2013-001T01:00:00.000 5.782e+00 -1.276e+01 3.220e+00 6.079e+00
:01:2013-001T01:01:00.000 5.782e+00 -1.274e+01 3.232e+00 6.077e+00
:01:2013-001T01:02:00.000 5.781e+00 -1.272e+01 3.244e+00 6.076e+00

4.3.2 X Tagged Y Scan Stream Example

The following example contains a single 3-D dataset. It's a cut down version of the Voyager PWS Spectrum
analyzer dataset. Here the X dimension is again time, but the data are Z-values. The Y dimension values are
provided in the header instead of in the data packets. There is one Y value in the <yscan> element for each
column of data values, this is much more efficient then repeating the Y values in each data packet.

Das2: Interface Control Document Das 2.2 Stream Format 23

[00]000248<stream version="2.2">
 <properties xMonotonic="true" xLabel="Time (s)" yLabel="Frequency (s!U-1!N)"
 zLabel="Electric Field (V m!U-1!N)" title="Voyager 1 PWS SA"
 Datum:xTagWidth="16.0 s" double:zFill="0.0" />
</stream>
[01]000201<packet>
 <x type="time24" units="us2000" ></x>
 <yscan nitems="5" type="ascii9" yUnits="Hz" name="" zUnits="V/m"
 yTags="10.0,17.8,31.1,56.2,100.0">
 <properties />
 </yscan>
</packet>
:01:2012-01-01T12:56:22.792 1.91e-06 8.92e-07 7.80e-07 6.04e-07 2.43e-07
:01:2012-01-01T12:56:38.792 1.91e-06 8.00e-07 8.47e-07 5.42e-07 4.36e-07
:01:2012-01-01T12:56:54.792 1.98e-06 4.63e-07 7.64e-07 7.56e-07 5.09e-07
:01:2012-01-01T12:57:10.792 1.91e-06 5.46e-07 7.97e-07 5.42e-07 6.55e-07
:01:2012-01-01T12:57:26.792 1.86e-06 6.80e-07 8.53e-07 4.40e-07 3.64e-07

X tagged Y scan streams work well for cubic dataset, but cannot handle X,Y,Z scatter data without a ridiculous
number of fill values, to plot scatter data use streams with <z> planes.

4.3.3 X Y Z Scatter Data Example

As a catchall to handle data that are not nicely aligned on a 2-D grid <x><y><z> scatter data streams are
supported. This example provides plasma density measurements over Mars from the MARSIS experiment.

[00]000497<stream version="2.2">
 <properties String:title="MARSIS Plasma and Magnetic Field Parameters"
 xLabel="LONG" xSummary="West Longitude"
 yLabel="LAT" double:zFill="-1.0"
 ySummary="This value is Planetocentric Latitude, but for radar
 sounding Planetographic Latitude is more accurate.
 This value is used to allow for direct comparison with
 other Mars Express data sets." />
</stream>
[01]000587<packet>
 <x type="ascii8" units="degrees"></x>
 <y type="ascii8" units="degrees"></y>
 <z type="ascii10" name="" units="kHz">
 <properties zLabel="F!Dpe!N" zSummary="Electron Plasma Frequency" />
 </z>
 <z type="ascii10" name="dens" units="cm**-3">
 <properties zLabel="N!De!N" zSummary="Electron Plasma Density"/>
 </z>
 <z type="ascii10" name="fce" units="kHz">
 <properties zLabel="F!Dce!N" zSummary="Electron Cyclotron Frequency" />
 </z>
 <z type="ascii10" name="mag" units="nT">
 <properties zLabel="B!Dmag!N" zSummary="B-Field Magnitude" />
 </z>
</packet>
:01: 186.49 -36.82 -1.0 -1.0 4.67e-01 1.67e+01
:01: 186.49 -36.49 -1.0 -1.0 8.77e-01 3.13e+01
:01: 186.49 -36.16 -1.0 -1.0 9.11e-01 3.25e+01
:01: 186.49 -35.83 -1.0 -1.0 1.06e+00 3.80e+01
:01: 186.50 -35.50 -1.0 -1.0 9.94e-01 3.55e+01

Das2: Interface Control Document Das 2.2 Stream Format 24

4.4 Data Header Reference Table

Table 7 below defines the XML elements used in Das 2.2 header packets.

Element Notes

<packet> This element's children define one data packet type. For each data packet type on of
these elements must be defined. Each packet header contains one, and only one packet
element. The top level element is merely a grouping element and contains no attributes.
The <x> child element is required and one or more <y> or <yscan> elements.

<packet>
 <x>

Defines the x-axis values for a data packet. These values are assumed to be the first
entry in each data packet. The x-axis dimension is also the streaming dimension. Any
data reduction handled by the das2server is performed in this dimension. The x-axis are
almost always in units of time.

attribute base If defined this provides the epoch time as an ASCII ISO-8601
time string. Use one of "hr", "min", "s"
"microseconds","nanoseconds", or "days" for the units
attribute value if a base is specified.

attribute type
(required)

The data format for the x-axis data elements, must be one of
sun_real8, sun_real4, little_endian_real8,
little_endian_real4, timeN, and asciiN, where N is the
number of characters in an ASCII time string, for example
time23, or ASCII data value, for example ascii10.

attribute units
(required)

The “units” of the X axis values. These are not just units as
typically used in physics but are instead units plus an implied 0
point. See section 4.4.1 for known values of the units
attribute. Note: Even if the type attribute indicates that the X
values are ASCII ISO-8601 time strings this attribute must be set
for internal conversions within reader programs.

<packet>
 <x>
 <properties>

Das2 properties cascade. Thus to override a general packet property, for this <x> plane,
put property values in this element. See the <properties> element in Table 6.

<packet>
 <y>

Defines a y-axis value for a data packet. Note that a packet may have any number of
<y> planes, as long as it does not have a <z> plane. Typically <y> planes are used for
the values in a line plot, or as the second dependent variable for <x>, <y>, <z> scatter
data.

attribute type
(required)

See the description for the type attribute in the <x> element.

attribute name
(usually-required)

Provides a name for the data plane, follows the formation rules
for C identifiers. Unless a stream contains <x><y><z> scatter
data the name field is required. For 3-axis scatter data streams Y
is an independent data axis, and the name attributed is not
required.

attribute units
(required)

The units of the this Y-vector's data values. See section 4.4.1 for
known values of the units attribute.

<packet>
 <y>
 <properties>

Das2 properties cascade. Thus to override a general packet property, for this <y> plane,
put property values in this element. See the <properties> element in Table 6: Das2.2
Stream Header XML Elements. There are a couple predefined properties that only make
sense at the level of a data plane. These are defined below.

Das2: Interface Control Document Das 2.2 Stream Format 25

Element Notes

String:operation If the data in this <y> plane were derived via some mathematical
operation on data from another plane, provide the name of the
operation here: Currently understood values are:
 BIN_AVG, BIN_MAX, BIN_MIN, DFT_POWER

String:source If the data in this <y> plane were derived via some mathematical
operation on data from another plane, provide the name of the
other plane here, this allows client programs to plot derived data
values together on the same plot for the same upstream source.

<packet>
 <yscan>

Defines a set of co-varying vectors with the same magnitude units. For this data type the
vector Y index is associated with some physical value, typically frequency.

attribute name
(required)

Provides a name for the data plane. Follows the rules for
C-identifers.

attribute nitems
(required)

The number of co-varying vectors. Note that each data packet
represents one slice across a constant number of vectors.

attribute type
(required)

See the description for the type attribute in the <x> element.

attribute yTags
(optional)

Use this attribute to associate the vector number with a physical
value. The value portion is a comma separated list of ASCII text
values, for example:
 yTags="12.5, 15.5, 16.7"

If neither the yTags or yTagInterval attributes are provided,
then the y values are assumed to be the same as the data index,
i.e. 0 to (nitems - 1)

attribute yTagInterval
(optional)

For Y values that are a series of points with a fixed value
separating each point individual yTags need not be specified.
Instead, the interval between points may be provided using this
attribute. Waveforms and operations on waveforms typically
have linearly spaced y values.

attribute yTagMin
(optional)

Used to provide the y value for the 0th index of the yscan.
This attribute is optional with the following defaults:

 - If yTagInterval is absent, this attribute is ignored

 - if yTagInterval is given but not yTagMax, defaults to: 0

 - if yTagInterval and yTagMax are given, defaults to:
 yTagMax - (nitems - 1) * yTagInterval.

attrubute yTagMax
(optional)

Used to provide the y value for last index of the yscan.
This attribute is optional with the following defaults:

 - If yTagInterval is absent, this attribute is ignored

 - if yTagInterval is given but not yTagMin, defaults to:
 (nitems - 1)*yTagInterval

 - if yTagInterval and yTagMin are given, defaults to:
 yTagMin + (nitems - 1) * yTagInterval

Das2: Interface Control Document Das 2.2 Stream Format 26

Element Notes

attribute yUnits Provides the physical units for the yTags values. The most
common values are: "Hz", "KHz" and "MHz", see section 4.4.1
for known values of the units attribute.

attribute zUnits Provides the physical units for the vector data values, for
example: "nT/Hz". See section 4.4.1 for known values of the
units attribute.

<packet>
 <yscan>
 <properties>

Das2 properties cascade. Thus to override a general packet property, for this <yscan>
plane, put property values in this element. See the <properties> element in Table 6:
Das2.2 Stream Header XML Elements. There are a two pre-defined properties that only
make sense at the level of a <yscan> data plane. These are defined below.

attribute boolean:peaks If true then clients are to treat this extra <yscan> as the peaks
for the first, unnamed, <yscan>.

attribute boolean:weights If true then clients are to treat this extra <yscan> as the weights
for the first unnamed <yscan>.

<packet>
 <z>

Defines a set of z values. Must be accompanied by a single <x> plane and a single <y>
plane. Any number of <z> planes are allowed.

attribute name
(required)

Provides a name for the data plane, this should follow the rules
for C identifiers with the relaxation that he first character can be
a digit.

attribute type
(required)

See the description for the type attribute in the <x> element.

attribute units
(required)

The units of the this Z-vector's data values. See section 4.4.1 for
known values of the units attribute.

<packet>
 <z>
 <properties>

Das2 properties cascade. Thus to override a general packet property, for this <z> plane,
put property values in this element. See the <properties> element in Table 6: Das2.2
Stream Header XML Elements.

Table 7: Das2.2 Packet Header XML Elements

4.4.1 Unit Values

Known values for this attribute are which include an epoch time are:

● us2000 – Microseconds since midnight January 1st 2000, ignoring leap seconds

● t2000 – Like us2000 but in units of seconds, ignoring leap seconds, i.e. every day is the same length

● us1980 – Microseconds since midnight January 1st 1980, ignoring leap seconds

● t1970 – Seconds since midnight January 1st 1970, ignoring leap seconds.

● mj1958 – Days since midnight 1958-01-01, more accurately Julian day – 2436204.5.

● mjd – Days since midnight November 17, 1858.

● cdfEpoch – milliseconds since 01-Jan-0000 TODO: What the heck is year 0?

● tt2000 – nanoseconds since 01-Jan-2000 including leap seconds, may be transmitted as an 8-byte
integer.

Other values for units are:

"dB", "radian", "degrees", "celcius degrees", "fahrenheit degrees", "centigrade", "deg

Das2: Interface Control Document Das 2.2 Stream Format 27

F", "hr", "min", "s", "ms", "microseconds", "nanoseconds", "days", "bytes/s", "KBytes/s",
"bytes", "KBytes", "Hz", "kHz", "MHz", "eV", "cm!a-3!n, K, cm/s", "V!a2!nm!a-2!nHz!a-1",
"V/m", "W/m!a-2!n", "inch", "m", "km".

Cleaning up the unit handling is a priority for the Das2 developers.

4.5 Comment Packets

Comment packets use the same wrapper format as Header Packets with the exception of the Packet ID field.
Instead of an integer ID consists of the bytes 0x78, 0x78, i.e. ASCII 'xx'. Here's an example stream with
embedded comments.

[00]000067<stream version="2.2"><properties monotonicXTags="true"/></stream>
[xx]000053<comment type="taskSize" value="100" source=""/>
[xx]000138<comment type="log:info" value="Input:T120101.DAT" source="vgpwrdr"/>
[01]000550<packet>
 <x type="time24" units="us2000" ></x>
 <yscan nitems="5" type="ascii10" yUnits="Hz" name="" zUnits="V/m"
 yTags="10.0,17.8,31.1,56.2,100.0">
 </yscan>
</packet>
:01:2012-01-01T12:56:06.792 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
[xx]000053<comment type="taskProgress" value="1" source=""/>
:01:2012-01-01T12:56:22.792 1.91e-06 8.92e-07 7.80e-07 6.04e-07 2.43e-07
:01:2012-01-01T12:56:54.792 1.98e-06 4.63e-07 7.64e-07 7.56e-07 5.09e-07
[xx]000053<comment type="taskProgress" value="2" source=""/>
:01:2012-01-01T12:57:26.792 1.86e-06 6.80e-07 8.53e-07 4.40e-07 3.64e-07
:01:2012-01-01T12:57:58.792 1.98e-06 4.63e-07 8.36e-07 8.57e-07 3.23e-07
[xx]000138<comment type="log:info" value="Input:T120102.DAT" source="vgpwrdr"/>
:01:2012-01-01T12:58:14.792 1.98e-06 6.05e-07 7.80e-07 6.65e-07 3.23e-07

Comment packets contain a single <comment> element who's attributes are defined in the table below. The
character encoding for Comment Packets is UTF-8.

Element Notes

<comment> Allows a das2 stream source to add processing information and other information into the
stream. Probably the most valuable use to provide progress updates that can be used for
progress bars by the client software.

attribute source
(required)

A text string indicating the source of the message. This is useful for
diagnostic messages as the stream may be processed by more than one
program on it's way to the client.

attribute type
(required)

Specifies the type of the comment. At present two attribute values are
understood:
● "log:info" – Indicates that the value attribute will provide a human
readable string for display by the client program during the data load.
● "taskSize" – Indicates that the value attribute will provide an integer
greater than 0 the overall size of a task as an integer. Place one of these
comments into the stream first and then follow by
type="taskProgress" comments to update overall completion level.
● "taskprogress" – Indicates that the value attribute will provide an
integer from 0 to taskSize. Use this comment to set the processing
completion level.

attribute value
(required)

The value of the value attribute varies based on the type attribute value.

Das2: Interface Control Document Das 2.2 Stream Format 28

4.6 Exception Packets

Exception packets use the same wrapper format as Header Packets with the exception of the Packet ID field.
Instead of an integer ID consists of the bytes 0x78, 0x78, i.e. ASCII 'xx'. Here's an example stream that
terminates in an exception. In this case a file IO error.

 [00]000485<stream version="2.2"><properties monotonicXTags="true"/></stream>
 [01]000544<packet>
 <x type="time24" units="us2000" ></x>
 <yscan nitems="16" type="ascii10" yUnits="Hz" name="" zUnits="V/m"
 yTags="10.0,17.8,31.1,56.2,100.0">
 </yscan>
 </packet>
 :01:2012-01-01T12:56:06.792 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
 :01:2012-01-01T12:57:26.792 1.86e-06 6.80e-07 8.53e-07 4.40e-07 3.64e-07
 :01:2012-01-01T12:57:58.792 1.98e-06 4.63e-07 8.36e-07 8.57e-07 3.23e-07
 :01:2012-01-01T12:58:14.792 1.98e-06 6.05e-07 7.80e-07 6.65e-07 3.23e-07
 [xx]000102<exception type="IOError"
 message="Directory /opt/project/voyager/pds/VGPW_0101 does not exist" />

Comment packets contain a single <comment> element who's attributes are defined in the table below. The
character encoding for Execption Packets is UTF-8.

Element Notes

<exception> Allows a das2 stream source to end with an error message that is displayable by an end user
client.

attribute type
(required)

The type of error. The following error types are understood:
● "NoDataInInterval"– The data selection parameters excluded all
available data
● "IllegalArgument" – One or more of the parameters given to the
reader is not valid. For example, if an Antenna selection parameter could
take either "Bx" or "Ex" and the program received "doggy" then this
would be an appropriate exception to return.
● "ServerError" - There is an internal problem in the Das2 server or one
of it's readers. This could be cause by a bad disk, file-system permission
problems, bad DSID files, etc. There is nothing the user can do from the
client side to fix the problem.
● ANYSTRING – Any other error type string may but this is merely for
documentation or for use by custom clients.

attribute message
(required)

The message string for the error.

4.7 Data Packets

Data packets are a mixture of values whose interpretation is provided by the proceeding header packet with the
same packet id. Das2 Stream data packets are fixed length. All packets with the same ID must have the same
length, unless the packet is redefined in the middle of the stream. If new packet header is encountered on a
stream it's definition replaces the previous definition with the same packet ID. Upon re-definition, all packets
must now conform to the new length requirement. The following table summarizes the data packet format.

Das2: Interface Control Document Das 2.2 Stream Format 29

Byte Index 0 1-2 3 4-9 10 to Packet Length + 10

Content 0x3A
ASCII ':'

Packet ID.
Zero padded

ASCII integer

0x3A
ASCII ':'

Packet Length.
Zero padded ASCII

integer

1-N Data values.
Data value format is defined
by the header with the same

packet ID

4.8 Macro Substitution in Header Packets

Das2 Stream data may pass through multiple programs from the time they are emitted from a reader until being
read by a client program. Some of the keywords in the stream, such as the xCacheResolution are updated as
needed along the way. To make streams information more transparent to end users, macro expansions may be
added to string attributes in the stream headers. Any parameter non-self-referencing value may be substituted.
The following example header will help to illustrate the concept.

[00]000494<stream compression="none" version="2.2" >
 <properties String:title="B-Field Magnitude!c(%{xCacheResolution} averages)"
 String:xLabel="SCET (UTC)"
 Datum:xTagWidth="60.000000 s"
 String:yScaleType="linear"
 DatumRange:xCacheRange="2012-03-09 to 2012-03-10 UTC"
 Datum:xCacheResolution="60.000000 s"
 String:sourceId="das2_bin_avgsec"/>
</stream>
[01]000843<packet>
 <x type="time25" units="us2000">
 </x>
 <y name="mag" type="little_endian_real4" units="nT">
 <properties String:ySummary="The magnitude of the magnetic field."
 String:yLabel="Magnitude (nT)"/>
 </y>
</packet>

Notice the bold text %{xCacheResolution} in the title attribute. This macro will expand to whatever value the
attribute Datum:xCacheResolution happens to have when the client program receives the data. The format rule
for Das2 Stream macros are:

"%{" + ANY_PROPERTY_NAME + "}"

There are a few items to remember when using macro substitutions in Das2 stream and packet headers:

1. The property type is not required, just it's name.

2. Substitutions work for any stream attribute, not just the standard items defined in section 4.2.

3. Since Das2 stream attributes cascade, the nearest attribute value is substituted.

4. Self referential macros are not allowed, i.e. don't use %{title} in a title attribute value.

The example above is taken from the output of the standard Das2 PyServer program das2_bin_avgsec, which
automatically adds the %{xCacheResolution} macro to the stream header as the data pass through.

Das2: Interface Control Document QStream Format 30

5 QStream Format

QStreams were introduced after QDataSets were introduced with the Das2 application Autoplot. QDataSet is the
more flexible data model that allows data in more forms to be represented, and roughly mirrors the structure of
data in a CDF file. QStreams also represent this data, but like Das2Streams allow the data to be streamed so that
processing can be done on the stream as it is received. As with Das2Streams, descriptive XML headers are mixed
with binary or ASCII data packets.

Differences between QStreams and Das2 Streams

A few things change with QStreams, namely that any number of datasets can be sent on a stream, and the stream
header identifies which of the datasets is the default dataset to be interpreted. Instead of a dataset having multiple
planes, there are simply multiple datasets and the semantics of QDataSet connect them. Also new, the entire
stream must use the same byte order (endianness), and streams can no longer be compressed. Data can be
encoded within the header elements, or encoded along with the other data packets. (Das2Streams had the problem
that packets would be large when there were many ytags.)

5.1 Stream Descriptor

A valid QStream starts with a header. This identifies the endianness of the stream and the default dataset. The
default byte order is big endian, and the packet will contain the tag “byte_order” to set the order.

[00]000096<?xml version="1.0" encoding="UTF-8"?>
<stream byte_order="little_endian" dataset_id="MinMax"/>

This indicates the byte order of the stream will be little endian, and the default dataset will have the id “MinMax.”
Optionally but encouraged, the xml encoding should be specified as well. Note too that all QStreams start with
[00], as do all Das2Streams. The six integers following the [00] tag indicate the descriptor xml is 96 bytes long.
A stream can have any number of stream descriptors, but each stream descriptor must have the same default
dataset_id and byte_order. Last, though this is never tested, it should be said that the byte sequence
“[00]dddddd<dddddd bytes>[” must never appear within the data or packet contents.

<TODO: reference to a schema for the stream descriptor> <TODO: high-rank datasets>

5.2 Packet Descriptors

A packet descriptor contains XML with the tag packet containing any number of qdataset packets. Each qdataset
tag has an id and a rank attribute. Each contains a properties tag the identify the properties of the dataset. Last,
each contains a values tag that defines either how the data will be encoded in each packet, or contain the values
in-line.

In the following packet descriptor, two qdatasets are described, MinMax and ds_0. ds_0 contains just one double
per packet (packet is a record encoded on the stream) These records are combined as they come in to form a rank
1 dataset of length N where N is the number of [01] packets. MinMax contains two doubles, which are combined
to make a rank 2 dataset that is [N,2].

[01]001079<?xml version="1.0" encoding="UTF-8"?>
<packet>

<qdataset id="ds_0" rank="1">
<properties>

<property name="UNITS" type="units" value="cdfTT2000"/>
<property name="FILL_VALUE" type="Double" value="-1.0E38"/>
<property name="LABEL" type="String" value="Epoch+ns"/>

</properties>
<values encoding="double" length=""/>

Das2: Interface Control Document QStream Format 31

</qdataset>
<qdataset id="MinMax" rank="2">

<properties>
<property name="BINS_0" type="String" value="min,maxInclusive"/>
<property name="DEPEND_0" type="qdataset" value="ds_0"/>
<property name="UNITS" type="units" value="counts"/>
<property name="SCALE_TYPE" type="String" value="linear"/>
<property name="NAME" type="String" value="MinMax"/>
<property name="USER_PROPERTIES">

<map>
<entry key="count" type="Integer" value="65536"/>

</map>
</property>

</properties>
<values encoding="double" length="2"/>

</qdataset>
</packet>

Encodings can be float, double, int, short, byte, long, ascii10, time17, etc. With ascii10, the 10 characters are
parsed as a double. With time17, the characters are parsed as an ISO8601 string.

[00]000067<?xml version="1.0" encoding="UTF-8"?>
<stream dataset_id="ds_0"/>
[02]000485<?xml version="1.0" encoding="UTF-8"?>
<packet>

<qdataset id="ds_2" rank="1">
<properties>

<property name="FILL_VALUE" type="Double" value="-1.0E38"/>
<property name="CADENCE" type="rank0dataset" value="1.5351
 units:UNITS=logERatio String:SCALE_TYPE=log"/>
<property name="SCALE_TYPE" type="String" value="log"/>

</properties>
<values values="10.0,46.41588833612777,215.44346900318823,1000.0"/>

</qdataset>
 </packet>
[01]000844<?xml version="1.0" encoding="UTF-8"?>
<packet>

<qdataset id="ds_1" rank="1">
<properties>

<property name="UNITS" type="units" value="us2000"/>
<property name="CADENCE" type="rank0dataset" value="6.0E7
 units:UNITS=microseconds"/>
<property name="MONOTONIC" type="Boolean" value="true"/>

</properties>
<values encoding="time17" length=""/>

</qdataset>
<qdataset id="ds_0" rank="2">

<properties>
<property name="DEPEND_0" type="qdataset" value="ds_1"/>
<property name="DEPEND_1" type="qdataset" value="ds_2"/>
<property name="FILL_VALUE" type="Double" value="-1.0E31"/>
<property name="QUBE" type="Boolean" value="true"/>

</properties>
<values encoding="ascii10" length="4"/>

</qdataset>
</packet>
:01:2013-04-04T00:00 -0.0325 0.0185 0.0014 -0.0008
:01:2013-04-04T00:01 -0.0314 0.019 0.0167 -0.0002
:01:2013-04-04T00:02 -0.0048 -0.0486 -0.2026 -0.0489

Das2: Interface Control Document QStream Format 32

:01:2013-04-04T00:03 -0.0051 -0.0489 -0.2026 -0.0489
:01:2013-04-04T00:04 0.0014 -0.0002 0.0166 -0.0002

5.3 Exceptions

Like the Das2Streams, exceptions can be represented on the stream as well. This enables the server to always
return a stream, even when there is an error condition (such as no data).

[xx]000155<?xml version="1.0" encoding="UTF-8"?>
<exception type="NoDataInInterval" message="No data found in interval.
 Last data found at 2012-02-01"/>

5.4 Examples

More examples of streams can be found at:

http://www.jfaden .net:8080/hudson/job/autoplot-test013/lastSuccessfulBuild/artifact/

http://www.sarahandjeremy.net:8080/hudson/job/autoplot-test013/lastSuccessfulBuild/artifact/
http://www.sarahandjeremy.net:8080/hudson/job/autoplot-test013/lastSuccessfulBuild/artifact/

Das2: Interface Control Document Das 2.3 Client - Server Interface 33

Appendix A: Das 2.3 Client - Server Interface

Das 2.2 is the current stable version. The basic interface and tools have been in use for over
10 years and work well for time series data. Das 2.3 is an expansion of this interface to
handle arbitrary data indices and to make more meta-data available to clients.

The purpose of a Das2 server is to listen for queries and provide responses in a standardized format. Though
there are many moving parts behind the scenes, client programs need only implement a Client – Server Interface
in order to find and retrieve data.

Two data query protocols are supported by Das 2.2 compliant servers. The legacy 2.1 protocol requires all data to
be retrieval by time range. See section 2, for details on the legacy protocol. This section defines the newer 2.2
protocol which allows reader programs to retrieve data via arbitrary parameters. Thus a Das 2.2 client program
my query for data by orbit number, or longitude and latitude, or any other parameter supported by the data source.

A.1: Relative URLs

Das 2.1 and Das 2.2 queries are supported using different relative URLs from the root server path. Table 8 below
summaries the different paths used for each request type.

Request 2.1 URL and response 2.2 URL and response

None
(i.e get root)

no relative URL

HTML intro page, no links

no relative URL

XML intro with style sheet, contains top level
data links and peer links

peers ?server=peers

XML message with stylesheet containing peer
list

/server/peers

XML message with style-sheet containing peer
list

list ?server=list

Plain text listing of data sources, one per line

/server/list

XML message with style-sheet containing full
recursive data set list

discover ?server=discover

Plain text listing of data sources which contain
an example range

not supported

describe ?server=dsdf&dataset=A/B/C.dsdf

IDL syntax DSDF file, see section 3.2.

/data/A/B/C

XML DSID file, see section Error: Reference
source not found

list level
not supported

/data/A/B/

XML data set list at this level

dataset ?server=dataset&dataset=A/B/C.dsdf&
DAS2.1_QUERY_STRING

A das2Stream or QStream

/data/A/B/C?DAS2.2_QUERY_STRING

A das2Stream or QStream

search not supported TBD

Table 8: Das 2.1 and 2.2 URL comparisons

Das2: Interface Control Document Das 2.3 Client - Server Interface 34

The 2.2 URL scheme was devised to make it easier for common web-browsers and search engines to navigate the
dataset hierarchy.

A.2: Describe Request

The query parameters supported by a data-source are defined in the DSID XML message delivered for a
describe operation. This operation is handled as a standard HTTP get on the data source URL, with no query
parameters for example:

Describe Request

GET /data/van-allen-probes/A/emfisis/L2/EmfisisWFRwaveforms HTTP/1.0
Host: das2.physics.uiowa.edu
Accept: *

and the DSID file with a style sheet is returned as the response...

Describe Response

HTTP/1.1 200 OK
Date: Tue, 23 Jul 2013 21:10:53 GMT
Server: Apache/2.0.63
Connection: close
Content-Type: text/xml; charset=UTF-8

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="/server/dsid-stylesheet.xsl"?>
<dasDSID xmlns="http://www.das2.org/dsid/0.2" name="EmfisisWFRwaveforms">

 <summary>Van Allen Probes 35 kHz Waveform data from L2 CDF files.</summary>

 <selectors>
 <param key="scet" name="SCET" min="2010-09-01" format="DATETIME">
 <summary>Spacecraft Event Time</summary>
 <description>
 Any ASCII time string parseable by Larry Granroth's parsetime algorithm,
 including ISO 8601 date times.
 </description>
 </param>

 <enum key="sensor" name="Sensor">
 <summary>Select one of 6 input sensors</summary>
 <description>
 EMFISIS is connected to 3 electric dipole antennas and 3 magnetic search coils.
 </description>
 <items>
 <item value="Bu" summary="Magnetic field U component sampled at 35 kHz" />
 <item value="Bv" summary="Magnetic field V Component sampled at 35 kHz" />
 <item value="Bw" summary="Magnetic field W Component sampled at 35 kHz" />
 <item value="Eu" summary="Electric field U component sampled at 35 kHz" />
 <item value="Ev" summary="Electric field V Component sampled at 35 kHz" />
 <item value="Ew" summary="Electric field W Component sampled at 35 kHz" />
 </items>
 </enum>

(More lines follow...)

Note the highlighted selector names above. It is these names that will form the keys for the data queries.

A.3: Das 2.3 Query Strings

TODO: write more...

Das2: Interface Control Document Das 2.3 Server – Reader Interface 35

Appendix B: Das 2.3 Server – Reader Interface

Das 2.1 is the current stable version. The basic interface and tools have been in use for over
10 years and work well for time series data. Das 2.2 is an expansion of this interface to
handle arbitrary data indices and to make more meta-data available to clients.

Das 2.1 readers only support connection-less operations. The reader program starts, answers reads it's command
line to determine what data are to be returned, and then exists Das 2.2 supports two connection modes:

1. Connection-less readers – These readers take in a query request and produce an output stream in of the
Das stream formats. No state data is maintained between requests.

2. Bi-directional Readers – These readers maintain an open channel between a client and a server.

B.1: Data Source Interface Definition (DSID) Files

Das 2.2 servers use Data Source Interface Definition (DSID) files to understand how to advertise and control
readers. DSID files must conform to the XML schema at:

 http://www-pw.physics.uiowa.edu/das2/das_dsid-0.2.xsd

Example DSIDs are included at:

 http://saturn.physics.uiowa.edu/svn/das2/das2Server/trunk/doc

A minimal DSID file follows, with main XML element names in bold. This particular example is for Voyager
PWS low-rate data:

<?xml version="1.0"?>

<dasDSID xmlns="http://www.das2.org/dsid/0.2" name="Vgr1SAFull">

 <summary>Voyager 1 Spectrum Analyzer Full Resolution</summary>

 <description>
 Electric Field averages and peaks from the Voyager 1 PWS 16-Channel
 Spectrum Analyzer
 </description>

 <reader output="das2stream">
 <externalProcess interfaceVersion="2">
 <exec>/opt/project/voyager/Linux.x86_64/bin/vgpw_sa_rdr 1</exec>
 </externalProcess>
 </reader>

 <selectors>
 <range key="scet" name="SCET" format="DATETIME">
 <summary>Spacecraft Event Time</summary>
 <allow op=".beg."/> <allow op=".end."/>
 </range>
 </selectors>

 <output>
 <dimension name="SCET" quantity="event time" unit="utc">
 SCET of the point when the instrument cycle started.
 </dimension>
 <dimension name="Channel Center" quantity="frequency" unit="Hz">

Das2: Interface Control Document Das 2.3 Server – Reader Interface 36

 Center frequencies of each spectrum analyzer channel.
 </dimension>
 <dimension name="Electric Field" quantity="rms electric field" unit="V m**-1">
 The band limited RMS electric field difference across Voyager's electric
 antennas.
 </dimension>
 </output>

 <maintainer name="Chris Piker" email="chris-piker@uiowa.edu" />

 </dasDSID>

Each DSID file always has the following elements:

dasDSID – The top level element, provides the name of the data source and provides the XML name space for the
elements.

summary – A one-line summary of the data source. This summary may be included in web-pages or other
auto-generated data look-up tools

description – A longer description of the data source. This is a good place to put any caveats or processing
notes.

reader – This block defines for the Das server how to run the reader. For the data source above the Das server is
to run the program vgpw_sa_rdr, which generates a das2 stream, and send it's standard output to the client.

selectors – Data sources may support any number of selectors, but for this reader the only way to select data is
by specifying a spacecraft event time range. The keyword for this selector is “sect”.

output – It's important to define the output of a reader so that client programs can know if data from this source
may be combined on plots with data from other sources. Thus the output dimensions are specified here

maintainer – The last required parameter is the maintainer and their e-mail address. Problems inevitably arise
and when they do it's important for testing software to know who to contact about the issue.

In addition to these elements others are supported, for a full reference see Appendix A.

B.2: Das 2.3 Java Plugin Readers

Java objects which support the org.das2.reader.Reader interface may be run directly by a Das2.2 server. In
order to locate and run a plugin reader an appropriate DSID file must be supplied.

B.3: Command Line Readers

A Das server can run external programs to generate output streams. This section defines the command line call
interface between a version 2.2 complaint Das reader and a Das server.

B.3.1: Return Value

Readers shall return 0 if the request was successfully parsed and the appropriate data for that request were output.
Note, the request my cover a range for which there were no data. This is a valid condition and 0 shall still be
returned.

Readers shall return a non-zero value for any errors detected in the request itself, or errors in reading the input
data, or errors in writing the output stream.

B.3.2: Command line Arguments

Arguments provided to the reader consist of UTF-8 text strings. There are two types of arguments, query
parameters and reader directives. The type of argument can be detected via the presence of an equals '=', sign
(byte value 0x3D) in the argument. Query parameters always contain an equals character, reader directives never

Das2: Interface Control Document Das 2.3 Server – Reader Interface 37

contain an equals character.

DIRECTIVES

These values never contain a space or equals sign and are always provided as strings with explicit capitalization.
Only one value is defined so far:

keepalive

When receiving the keepalive argument a reader that supports connected operations shall not exit, but shall
remain running, waiting for control directives from Standard input. If a reader does not support keepalive, and
this control value is received, then the reader must exit with a not zero return and sent a message to standard
output noting that keepalive is not supported.

QUERY PARAMETERS

Das servers transmit data selection parameters to readers in the form of 'keyword operation value' triplets. Each
triplet shall appear to the reader as a single input parameter. For example if the server runs a reader as follows:

some_reader scet.beg.2012-02-01 scet.end.2012-02-02

From the perspective of a reader implementer, the command line arguments are:

 arg 0: some_reader

 arg 1: scet.beg.2012-02-01

 arg 2: scet.end.2012-02-02

The keyword section of the pair may not contain spaces, the value section may contain any UTF-8 sequence.
There is no space between the '=' sign and the keyword or value. Note that since the value may contain any
UTF-8 byte sequence, spaces are allowed in the value. Thus any space after the equals sign is part of the value.

The order of the pairs shall not affect the operation of the reader.

B.3.3: Relation between selectors and command line arguments

DSID files define how to select data from a data source via XML <selector> elements. Here's the relationship
between command line parameters and selector elements.

PARAM SELECTOR

This is the most general type of selector. It represents a continuous or roughly continuous parameter. Time, or
more specifically, Spacecraft Event Time, is the most commonly supported selection parameter. Almost all Das2
readers support selecting data by time range. The snippet below compares the XML selector specification to some
of the possible command line argument sets.

DSID: <param keyprefix="scet" name="SCET" format="DATETIME" >

cmdline: scet.beg.2012-01-02 scet.end.2012-01-03

cmdline: scet.gt.2013-10-09T19:00

cmdline: scet.beg.2012-01-02 scet.end.2012-01-03 scet.ne.2013-01-02T19:00

Note the lack of an end time in the second command line example. This is legal and means that the data source
should send all available data greater than the given start time. The comparisons .beg. and .end. are
synonyms for .ge. and .lt. respectively.

Though the last command line example is perfectly legal most readers will not want to support a “not equals”
comparison. The <allow> sub element may be used to prevent a reader from receiving unwanted comparison
operations on the command line. The next example only the “equals” comparison is allowed.

DSID:<value key="fftlen" name="FFT Length" format="INTEGER" >

 <allow op=".eq" />

Das2: Interface Control Document Das 2.3 Server – Reader Interface 38

cmdline: fftlen.eq.1024

Multiple <allow> elements my be specified if needed.

ENUM SELECTOR

A single parameter is needed. The value portion of the command line argument comes from item's 'value'
attribute:

DSID:<enum key="chan" name="Engineering Channel">

<item name="+1.5V HFR Rail" value="hfr_1.5"/>

...

</enum>

cmdline: chan.eq.hfr_1.5

BOOLEAN SELECTOR

A single parameter is needed, the value portion is any one item from the set {true, false, 1, 0} for example:

DSID: <boolean key="rm_sndr" name="Remove Sounder">

cmdline: rm_sndr.eq.true

B.3.4: Standard Input

Das Readers which indicate in their DSID that they support keepalive must read standard input while
delivering data. This is required to support control messages for data streams over BEEP. (See
http://beepcore.org) The format of the input control messages is TBD.

Keepalive support is indicated in the DSID by adding the

keepalive="true"

attribute to the <reader> and <reducer> elements.

B.3.5: Standard Output

Das2.2 Readers output data on the Standard Output file descriptor. The format must match that given in the
associated DSID. Valid formats are Das2Streams QStreams or others not yet defined.

B.3.6: Standard Error

Das2.2 Readers output error and status messages to the Standard Error file descriptor.

(TBD: The format of these messages is not yet defined. I'm assuming it's simply unformatted UTF-8 text.)

Das2: Interface Control Document DSID Schema Reference 39

Appendix C: DSID Schema Reference

The authoritative source for data source ID files is the schema document. The current schema file, as of August
12th, 2013 is das_dsid-2.2.xsd. Any information in this appendix that conflicts with the schema definition file
is incorrect. That said, a textual overview is handy before attempting to read the XML definition directly.

Das2: Interface Control Document Proposed QStream Changes 40

Appendix D: Proposed QStream Changes

Various proposals that are being considered.

Length in packets, pipes used instead of colons.

|nn|dddddd for packets. This would allow variable length packets, and gets rid of the problem when :01:
appears in timetags.

Enumeration Units encoding.

Presently all the values of an enumeration must be in the packet descriptor, which is tedious, limiting, and
burdensome to programs. For example, programs must enumerate all the possible responses to define the unit.
The das2 unit can have values added continually, and this should be available to the stream as well. For example,

<enum unit='unitId' value=2 text='Spacecraft spin flip'>

might allocate the number 2 to mean the message, and it would be up to the client to convey this information.

Exceptions allowed without stream header.

The current parser allows the stream to be encoded without the header when an exception is thrown. This means
that some valid streams start with [xx].

Das2: Interface Control Document Example Das2 Stream Header Packets 41

Appendix E: Example Das2 Stream Header Packets

In the spirit of "An example is worth a 1000 words", here's a few examples

E.1: Correlated time series (x multi y)

The following example is taken from the Mars Express MARSIS digitized density data reader. The records have
three planes, <x> <y> <y>. It is an example of an X with multiple Y values.

[00]000158<stream>
 <properties
 String:xLabel="SCET (UTC)" Datum:xTagWidth="8.0 s"
 String:title="MARSIS Plasma and Magnetic Field Parameters"
 />
</stream>
[01]000413<packet>
 <x type="time24" units="us2000"></x>
 <y type="ascii11" name="dens" units="cm**-3">
 <properties
 String:yLabel="N!De!N" String:yDisplayName="Electron Plasma Density"
 String:summary="None"
 />
 </y>
 <y type="ascii11" name="mag" units="nT">
 <properties
 String:yLabel="B!Dmag!N" String:yDisplayName="B-Field Magnitude"
 String:summary="None"
 />
 </y>
</packet>
:01:2005-08-04T22:06:58.389 5.52e+02 2.05e+01
:01:2005-08-04T22:07:05.932 5.21e+02 2.09e+01
:01:2005-08-04T22:07:13.475 6.91e+02 2.06e+01
:01:2005-08-04T22:07:21.018 1.36e+03 2.01e+01
:01:2005-08-04T22:07:28.561 6.79e+02 2.26e+01

